
Towards less-biased language assessment: Exploring dynamic and processing-based assessments in diverse bilingual children

Kerry Danahy Ebert, Lizbeth H. Finestack, Kirstin Kuchler, & Eugene Wong

Background

- Traditional language assessment methods index language knowledge
- Performance is influenced by both language-learning ability & language experience (Ebert & Pham, 2019)
- Over 350 non-English home languages (L1s) spoken in U.S.
- Highly variable language learning experiences for bilingual children (e.g., Kašćelan et al., 2022)

Traditional language assessments are inadequate for this population

Dynamic assessment incorporates

teaching into assessment

o Promising approach for bilingual children
(Hunt et al., 2022; Orellana et al. 2019)

Processing-based tasks aim to measure skills that support language learning

 Linguistic & non-linguistic tasks exist (Armon-Lotem & Meir, 2016; Ebert & Pham, 2019; Tuller et al., 2018)

Zone of proximal development processing skills Processing-based tasks

Research Purpose & Questions

Purpose: evaluate the potential of dynamic assessments and processing-based tasks to provide less-biased assessment within diverse bilingual populations

- 1. Are scores on dynamic and processing-based assessments comparable across different L1 groups?
- 2. Do scores on dynamic and processing-based assessments converge within a diverse group of bilingual children?

Tasks

English language comprehension

Test for Auditory Comprehension of Language - 4th Edition (TACL-4; Carrow-Woolfolk, 2014), grammatical morphemes subtest score

Dynamic assessments

- Narrative level: Predictive Early Assessment of Reading and Language (PEARL; Petersen & Spencer, 2016), story grammar pre-test score
- Morpheme level: Novel morpheme learning task (Finestack, 2014), score under explicit learning conditions

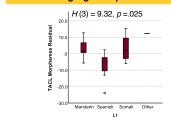
Processing-based tasks

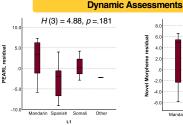
- · Linguistic
- Working memory: Clinical Evaluation of Language Fundamentals Preschool (Wiig et al., 2020) Recalling sentences subtest score
- Phonological short-term memory: Nonword repetition task (Dollaghan & Campbell, 1998), percent phonemes correct
- Nonlinguistic
- Processing speed: Visual choice detection task (Kohnert & Windsor, 2004), reaction time
- Sustained attention: Visual continuous performance task (Ebert et al., 2023)
- Working memory: Auditory tonal working memory task (Ebert, 2014)

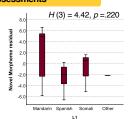
Acknowledgements: Sara Dasler, Kayla Greifenkamp, Marina LaForce, Nkauj-Huab Lo, Jennifer Meraz Barrera, Muna Musse, Mia Tortomasi, Liliana Williams. University of Minnesota internal funding

Participants

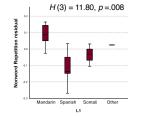
- Children aged 4-10 years who speak a non-English language at home
- Parents interviewed using the Alberta Language Environment Questionnaire (Paradis, 2010) & Alberta Language Development Questionnaire (Paradis et al., 2010)

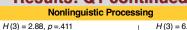

	Mandarin	Somali	Spanish	Malayalam	All	
N (M/F)	10 (6/4)	4 (0/4)	8 (4/4)	1	23	
Age	5.84 (1.17)	7.99 (1.86)	6.53 (0.82)	5.74	6.45 (1.37)	
NVIQ	115.2 (17.2)	106.5 (21.6)	85.13 (7.66)	104	102.7 (19.7)	
Home L1 use	74.2% (18.3%)	17%*	61.8% (19.6%)	50%	65.2% (22.0%)	
L1 develop.	0.79 (0.10)	0.83 (0.10)	0.74 (0.13)	0.80	0.78 (0.11)	
Med. parent education	Grad degree	High school	Did not finish high school	Bachelors degree	Some college	

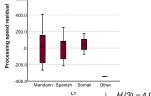

Results: Q1

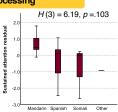

Kruskal Wallis test comparing age-adjusted scores on each assessment across L1 groups

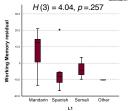
Language Comprehension


Linquistic Processing


H (3) = 6.63, p = .085




University of Minnesota Driven to Discover®


Disclosures: Kerry Ebert & Liza Finestack: Salaried employees of University of MN. Kirstin Kuchler: Supported by University of Minnesota internal funding. Eugene Wong: no conflict of interest. Future directions funded by NIDCD R01DC019895 (PI: Ebert; Co-I: Finestack)

Results: Q1 continued

Results: Q2

Bivariate and partial correlations (age removed) between task

	TACL	PEARL	Novel Morpheme	NWR	Sentence repetition	Proc. speed	Attention	WM			
TACL	-	.66**	.57**	.53*	.70**	67**	.46*	.34			
PEARL	.65**	-	.59**	.39	.37	30	.57**	.35			
Novel morpheme	.45*	.56*	-	.51*	.42	23	.63**	.42			
NWR	.48*	.35	.46*	-	.55*	08	.48*	.49*			
Sentence repetition	.61**	.30	.28	.50*	-	38	.11	.23			
Proc. speed	51*	22	.05	.11	16	-	38	15			
Attention	.37	.54*	.58*	.43	04	25	-	.22			
WM	.14	.29	.28	.44	.05	.16	.11	-			
Bivariate correlations above diagonal partial correlations below diagonal * n < 05 ** n < 01											

Conclusions & Future Directions

This preliminary investigation considered dynamic assessments and processing-based tasks in a diverse group of bilingual children

- · Positive correlations between tasks support convergence
- Across dynamic and processing task types
- Across linguistic and nonlinguistic domains
- Traditional language assessments & linguistic processing tasks showed largest differences between L1 groups
- But numerous demographic variables should be considered in group comparisons
 We plan to establish the psychometric properties of dynamic
 assessments and processing-based tasks in kindergarten-aged
 bilingual children with diverse L1s
- Reliability: are these assessments internally consistent and consistent over time?
- Structural validity: do these assessments converge on a single languagelearning ability or on multiple factors?
- Concurrent validity: do these assessments agree with parent and teacher reports of language ability?
- Predictive validity: do these assessments predict growth in the L1 and in English? Can they predict risk for poor language outcomes?